comcast logoAs the telecom industry explores networking technology supporting speeds greater than 100 Gbps, some new thinking will be required.

Take Comcast’s announcement today that it successfully completed a live field trial of 1 terabit per second (Tbps) optical transmission over a distance of nearly 1,000 kilometers. Unlike with previous optical transport technology, that 1 Tbps connection did not fit into a single wavelength based on the wavelength grid that traditionally has underpinned DWDM transmission.

Instead the field trial, which used equipment from Ciena, was based on a flexible grid. With this approach, network operators can vary the distance between wavelengths, now known as “channels” or “carriers,” and combine multiple channels together to create a single logical path known as a “super channel” or “super carrier.” You could think of it as a really advanced form of bonding for wavelengths.

Advertisement

In an email to Telecompetitor, a Comcast spokeswoman said the field trial used “a 200 GHz super channel utilizing five flexgrid channels.” She also noted that “this is 250% more spectrally efficient than 100 Gbps is today.” And she confirmed that “there was no regeneration – we utilized variable gain EDFAs and Raman amplification on this path.”

Ciena isn’t the only company to use the flexible grid concept to reach data rates above 100 Gbps. Other companies that have been exploring this concept include Bell Labs, Huawei, Infinera, NEC, and probably others as well. In laboratory tests and demonstrations, companies such as these have reached speeds of 1 Tbps using various super channel options over a range of distances.

But Comcast and Ciena’s terabit trial is rather unique in that it carried live data traffic over an existing commercial network that also carried customer traffic over 10G, 40G and 100G wavelengths. According to a press release issued jointly by Comcast and Ciena today, all of the wavelengths co-existed on a mix of flexible and 50 GHz-spaced fixed grid channels.

Tweaking the wavelength grid as Ciena and others are doing also may require rethinking the reconfigurable optical add/drop multiplexers (ROADMs) that play a key role in directing optical network traffic. Comcast’s trial used a flexible grid ROADM.

Get our free newsletter
As the Comcast spokeswoman explained, “Standard ROADMs are set at a fixed ITU grid spacing of 50 GHz. The flexible grid ROADMs allow you to adjust the spacing to accommodate variable sized wavelengths down to 12.5 GHz. You get flexibility between distance and speed.”

It’s also worth noting that the Comcast deployment used ELEAF fiber. Today’s announcement did not indicate how widely deployed this fiber is or how the use of a different type of fiber might impact results.

Comcast has no specific plans to deploy 1 Tbps service, the spokeswoman said. But considering how fast data network traffic is growing, it’s a smart move for the company to begin to explore options such as these before the situation becomes critical.

 

 

 

 

 

 

 

 

 

 

 

Join the Conversation

One thought on “Comcast/ Ciena Terabit Trial: Rethinking the Wavelength Grid

  1. Comcast continues to be a leader in fast internet options. I moved from California to Washington and was able to hook up to a 50mb connection. Like anything else, it is never consistent. The speed varies down to 10mb at times which makes a big impact overall. However, if I had 100 Gbps and it dropped, I still would have incredible speed to work with. Bring it on!!

Leave a Reply

Your email address will not be published. Required fields are marked *

Don’t Miss Any of Our Content

What’s happening with broadband and why is it important? Find out by subscribing to Telecompetitor’s newsletter today.

You have Successfully Subscribed!